
Monkeysign Documentation
Release ???

Antoine Beaupré

May 29, 2023

Contents

1 Features 3

2 Similar projects 5
2.1 Install . 5
2.2 Usage . 7
2.3 Support . 10
2.4 Contribute . 12
2.5 History . 19
2.6 API documentation . 27
2.7 UI mockups and design . 32
2.8 Terminology . 33
2.9 Credits . 33

Python Module Index 35

Index 37

i

ii

Monkeysign Documentation, Release ???

Monkeysign is a tool to overhaul the OpenPGP keysigning experience and bring it closer to something that most
primates can understand.

The project makes use of cheap digital cameras and the type of bar code known as a QRcode to provide a human-
friendly yet still-secure keysigning experience.

No more reciting tedious strings of hexadecimal characters. And, you can build a little rogue’s gallery of the people
that you have met and exchanged keys with! (Well, not yet, but it’s part of the plan.)

Monkeysign also features a user-friendly commandline tool, similar to caff, to sign OpenPGP keys following the
current best practices.

Monkeysign was written by Jerome Charaoui and Antoine Beaupre and is licensed under GPLv3.

Contents 1

Monkeysign Documentation, Release ???

2 Contents

CHAPTER 1

Features

• commandline and GUI interface

• GUI supports exchanging fingerprints with qrcodes

• print your OpenPGP fingerprint on a QRcode

• key signature done on a separate keyring

• signature sent in an encrypted email to ensure:

1. the signee controls the signed email

2. the signee controls the private key

3. the signee decides what to do with the signature

• local (“non-exportable”) signatures

• send through local email server, arbitrary SMTP server or other programs

For usage instructions, see Usage section, for install instructions, see Install section and for support, see the Contribute
section.

3

Monkeysign Documentation, Release ???

4 Chapter 1. Features

CHAPTER 2

Similar projects

• OpenKeychain, a fork of APG, has support for exporting and importing fingerprints in QRcode and NFC. It uses
similar strings for QRcodes exchanges and is compatible with Monkeysign. (Github project)

• GPG for Android (of the Guardian project) will import public keys in your device’s keyring when they are found
in QRcodes, so it should be able to talk with Monkeysign, but this remains to be tested. (Github project)

• Gibberbot (also of the Guardian project) can exchange OTR fingerprints using QRcodes. (Github project)

2.1 Install

Monkeysign can be installed in various ways, depending on which platform you are using. You can install Monkeysign:

• Using packages, recommended if you are running a distribution that has native packages for Monkeysign

• Using PIP, recommended if you are on another distribution that doesn’t have native packages of Monkeysign or
you want to run the latest version without upgrading the whole operating system

• From source, if the above doesn’t work, if you need to test unreleased code, or if you want to contribute to
Monkeysign

2.1.1 Using packages

Some distributions offer ready-to-use packages for Monkeysign which can be easily installed with a package manager.
Below is a table of distributions that have packages for Monkeysign.

Important: Those packages may not be up to date with the latest releases. Before submitting a bug report, check
the package version and compare that to our latest release then review the changelog to see if the bug has been
fixed. Report bugs to the package maintainer rather than directly to Monkeysign if the package is out of date in the
distribution.

5

https://www.openkeychain.org/
http://www.thialfihar.org/projects/apg/
https://github.com/open-keychain/open-keychain
https://guardianproject.info/code/gnupg/
https://guardianproject.info/
https://github.com/guardianproject/gnupg-for-android
https://guardianproject.info/apps/gibber/
https://guardianproject.info/
https://github.com/guardianproject/Gibberbot
https://0xacab.org/monkeysphere/monkeysign/blob/HEAD/debian/changelog

Monkeysign Documentation, Release ???

Also consider that the packages below (apart from the Debian packages) have not been reviewed by the Monkeysign
team.

Distribution Source Command
Arch Linux AUR1 pacman -S monkeysign
Debian jessie, stretch, sid, . . . 2 apt-get install monkeysign
Gentoo ebuild emerge monkeysign
openSUSE openSUSE official repository zypper in python-monkeysign
Raspbian Raspbian pool apt-get install monkeysign
Ubuntu 14.04, 15.04, 15.10, 16.04, . . . apt-get install monkeysign

Tip: Please ask package maintainers to build a package for your platform if it is missing above or, if you can package /
submit it yourself, please help us with that! If you package Monkeysign, please let us know by filing an issue detailing
the distribution name, a link to the package and a command to install it.

2.1.2 Using PIP

You can install Monkeysign with PIP, with the following command:

pip install monkeysign

Important: Note that 2.1.0 is the first release of Monkeysign published this way. It has not received as much testing
as the other methods.

2.1.3 From source

Installing Monkeysign from source is harder, and shouldn’t generally be necessary. You may be asked, however, to do
that in order to test if your bug is still present in the current release.

Requirements

The following Python packages are required for the GUI to work:

python-qrencode python-gtk2 python-zbar python-zbarpygtk

If they are not available, the commandline signing tool should still work but doesn’t recognize QR codes.

Monkeysign requires a working GnuPG installation.

Downloading

You can fetch Monkeysign with git:

1 The AUR package ships with patches that have not been reviewed by the Monkeysign team.
2 Monkeysign has been in Debian since Debian 6 (squeeze-backports-sloppy) and is maintained there as a native package.

6 Chapter 2. Similar projects

https://aur.archlinux.org/packages/monkeysign/
https://packages.debian.org/jessie/monkeysign
https://packages.debian.org/stretch/monkeysign
https://packages.debian.org/sid/monkeysign
https://packages.gentoo.org/packages/app-crypt/monkeysign
http://software.opensuse.org/package/python-monkeysign
http://archive.raspbian.org/raspbian/pool/main/m/monkeysign/
https://launchpad.net/ubuntu/trusty/+source/monkeysign
https://launchpad.net/ubuntu/vivid/+source/monkeysign
https://launchpad.net/ubuntu/wily/+source/monkeysign
https://launchpad.net/ubuntu/xenial/+source/monkeysign
https://0xacab.org/monkeysphere/monkeysign/issues/new

Monkeysign Documentation, Release ???

git clone https://0xacab.org/monkeysphere/monkeysign.git

Tarballs are also automatically generated on the 0xACAB site for the main branch or you can download tarballs for
every past release as well.

You can also find a source tarball from the Debian mirrors here:

http://cdn.debian.net/debian/pool/main/m/monkeysign/

The .tar.gz file has a checksum, cryptographically signed, in the .dsc file.

Installing

To install monkeysign from source, run:

sudo ./setup.py install --record=install.log

Running

It is also be possible to run Monkeysign without installing it, directly from the source tree, with:

./scripts/monkeysign

and:

./scripts/monkeyscan

See the Usage section for more information on how to use Monkeysign.

2.2 Usage

Monkeysign comes in two different interfaces: a commandline interface named monkeysign and a graphical interface
named monkeyscan.

Monkeysign creates a temporary keyring to sign keys, and then encrypts and sends the signature by email to the owner
of the key. This makes possible to verify that the holder of the private key (used to decrypt the signature) has also
access to the mailbox mentioned in the key.

Note: Make sure you have your email credentials in hand and read the Sending signed key material section before
starting, as Monkeysign may not know, by default, how to send email.

Tip: If you have problems using Monkeysign, please do report issues and bugs about it, it’s a great way of contribut-
ing! We also welcome documentation, translation and patches, see Contribute for more information.

2.2.1 Monkeysign

The commandline interface should provide you with a complete help file when called with --help:

2.2. Usage 7

https://0xacab.org/monkeysphere/monkeysign/repository/archive.tar.gz?ref=HEAD
https://0xacab.org/monkeysphere/monkeysign/tags
https://0xacab.org/monkeysphere/monkeysign/tags

Monkeysign Documentation, Release ???

monkeysign --help

For example, to sign the Monkeysign test key:

monkeysign 3F94 240C 918E 6359 0B04 152E 86E4 E70A 96F4 7C6A

This will fetch the key from your keyring (or a keyserver) and sign it in a temporary keyring, then encrypt the signature
and send it in an email to the owner of the key. Emails can be sent in different ways, documented in Sending signed
key material.

If the wrong secret key is chosen to sign the key, you can override it with the --user option.

Caution: It is important to use Monkeysign with the fingerprint, and not with the key id, specially when using it
through the Tor network, as a key id can be duplicated easily, unlike fingerprints.

2.2.2 Monkeyscan

The graphical interface (GUI) should be self-explanatory, it should be in your regular application menus, or you can
call start it form the commandline with:

monkeyscan

The GUI will show you a bar code representing the fingerprint of what Monkeysign thinks is your primary key. You
can change that in the Identity menu, or by customizing the default-key parameter in your gpg.conf file.

On the left side, you should see the output of your camera. You can change cameras (if you have more than one) in
the Video device menu, where you can also turn off the camera altogether.

To exchange fingerprints, you should point the camera at another user’s bar code. Monkeysign will detect that user’s
key fingerprint, fetch the key over the network from keyservers, then ask you for confirmation before signing and
sending the email, just like the command line interface. See Sending signed key material for more information about
how email is sent in Monkeysign in general.

There is a very crude preferences window available in the Edit menu. There is work underway to improve it (see 0xA-
CAB issue #41), but it should allow you to create a configuration file with your personal settings. See Configuration
files for more information about this as well.

2.2.3 Sending signed key material

Monkeysign will attempt to send the signed key by email, unless the --no-mail argument is specified. In this case,
the encrypted key material is shown on the terminal and can then be copy-pasted in the medium of your choice. This
is useful, for example, if you use a web email client like Roundcube, Google Mail or similar.

Monkeysign supports many ways of sending emails:

• Using the system email software (MTA) (e.g. sendmail or Postfix)

• Using your normal email client (MUA) (e.g. Thunderbird or Mutt)

• Using SMTP (e.g. connecting directly to your provider)

Also note that the --tor option affects how email will be sent, but only when using the SMTP method, as Monkeysign
has no way to handle how your MUA or MTA will talk to the network.

8 Chapter 2. Similar projects

https://0xacab.org/monkeysphere/monkeysign/issues/41
https://0xacab.org/monkeysphere/monkeysign/issues/41

Monkeysign Documentation, Release ???

Using the system email software (MTA)

Monkeysign, by default, assumes you have a local MTA installed as sendmail. If it is not, you can specify the path
to a sendmail compatible program with the --mta option. Such a program should accept the complete message on
standard input, and the recipient is passed on the commandline in place of the %(to)s argument.

Note that it is uncommon for workstations and laptops to have a working MTA installed: this is more commonly done
on servers, and unless you know what you are doing, you are more likely to want to talk to your existing email client,
your MUA.

Using your normal email client (MUA)

Therefore, to properly send email on your workstation, you may need to tell Monkeysign how to use your regular
email client, your MUA. For this, you can use the --mua option.

By default, Monkeysign will try to figure out your default email client when you use the --mua flag is used without
argument. This will in turn call the xdg-email command which automatically uses your configured email client
correctly:

monkeysign --mua [...]

Your default mail client can be modified in your desktop environment control panel, or with the xdg-mime command,
for example this will set Thunderbird as your default email client:

xdg-mime default thunderbird.desktop x-scheme-handler/mailto

You can also specify your own email client on the fly. Here are few examples of known working configurations.

• Thunderbird:

monkeysign --mua "thunderbird -compose to=%(to)s,subject=%(subject)s,body=
→˓%(body)s,attachment=%(attach)s" [...]

Note: Thunerbird fails to respect the attachment parameter in versions before 52.1.1, see Debian BTS #837771
for more details.

• Mutt:

monkeysign --mua "mutt -a %(attach)s -s %(subject)s -i %(body)s %(to)s" [...]

Finally, note that you need to confirm when you are finished writing the actual email. This is because we cannot tell
when the email is sent, because a lot of software (especially Thunderbird) return before the email is sent, see Debian
BTS #677430 for more information about this issue.

Note: Essentially, the difference between --mta and --mua is that the complete message is piped through the
MTA command whereas it is passed as an argument on the commandline for MUA commands. Also, the --mta com-
mand expands only the %(to)s parameter, whereas the --mua command expands %(attach)s, %(subject)s,
%(body)s and %(to)s.

Note that when a --mua is used, only the key material is encrypted: the body of the email is sent in the clear. This is
because Monkeysign cannot control how the attachment layout in the MUA in a standard way.

Furthermore, it may be more difficult for the end-user to import the key when it was sent with a MUA, as the recipient’s
own MUA may not know how to both decrypt and import the key at the same time. The MTA method doesn’t have

2.2. Usage 9

https://bugs.debian.org/837771
https://bugs.debian.org/677430
https://bugs.debian.org/677430

Monkeysign Documentation, Release ???

this problem because of MIME encapsulation. See also 0xACAB issue #7 for a broader technical discussion about the
--mua implementation.

Using SMTP

Note that you can also send email using your provider’s SMTP server directly, turning Monkeysign into a MUA itself.
For example:

monkeysign --smtp=mail.example.com:587 --smtpuser=john [fingerprint of OpenPGP key to
→˓sign]

In the above, Monkeysign will attempt to connect to the mail.example.com SMTP server over the submission
port (587), attempt to upgrade the connection securely (using STARTTLS) and use the john username. Password will
be prompted securely.

Tip: To use a raw TLS connection, you can also use the --tls flag.

Tip: You can also try to deliver email over Tor network with the --tor option. Be be aware that a lot of email
providers block Tor exit nodes for spam control. You may need to use your provider’s hidden service to workaround
those issues. Ask your email provider for Tor support if you have problems with the SMTP method.

2.2.4 Configuration files

Monkeysign will read /etc/monkeysign.conf and ~/.config/monkeysign.conf (in that order) for con-
figuration options. Each option can be specified on its own line. Lines starting with the pound sign (#) are ignored as
comments. A configuration file can be generated with the --save option, or through the preferences window in the
GUI. Here is a sample configuration file:

use my SMTP server to send email
smtpserver=smtp.example.com:587
this is my username, password is securely prompted interactively
smtpuser=john
be more verbose
verbose

As you can see, flags like --verbose are simply specified on their own, while options with arguments need to be
seperated with an equal (=) sign.

2.3 Support

If you have problems or question using Monkeysign, there are several options at your disposal:

• Try to troubleshoot the issue yourself

• Write to the mailing list

• Chat on IRC

• File bug reports

10 Chapter 2. Similar projects

https://0xacab.org/monkeysphere/monkeysign/issues/7
https://www.torproject.org/

Monkeysign Documentation, Release ???

We of course welcome other contributions like documentation, translations and patches, see the Contribute guide for
more information on how to contribute to the project.

2.3.1 Troubleshooting

The basic way to troubleshoot Monkeysign is to run the same command as you did when you had an error with the
--verbose or, if that doesn’t yield satisfactory results, with the --debug output.

Note: The debug output outputs a lot of information, as it shows the OpenPGP key material as it is exchanged with
GnuPG. It may be confusing for new users.

If you suspect there is a bug in Monkeysign specific to your environment, you can also try to see if it is reproducible
within the test suite with monkeysign --test. From there, you can either file a bug report or try to fix the issue
yourself, see the Contribute section for more information.

Otherwise, see below for more options to get support.

2.3.2 Mailing list

Anyone can write to the mailing list at monkeysphere@lists.riseup.net. You can browse the archives before posting to
see if your question has already been answered. Thanks to Riseup.net for graciously hosting our mailing list.

Tip: We encourage you to donate to Riseup to support the Monkeysign project, as we use several parts of their
infrastructure to develop Monkeysign.

Note that the mailing list is for the larger Monkeysphere project so if you subscribe, you should expect discussions to
go beyond only Monkeysign. Furthermore, when you write to the mailing list, you should explicitly mention that you
are talking about Monkeysign.

2.3.3 Chat

We are often present in realtime in the #monkeysphere channel of the OFTC network. You can join the channel
using this link or this web interface.

2.3.4 Bug reports

We want you to report bugs you find in Monkeysign. It’s an important part of contributing to a project, and all bug
reports will be read and replied to politely and professionally.

We are using 0xACAB.org’s Gitlab instance to manage issues, and this is where bug reports should be sent. Some
issues are also documented by Debian users directly.

Tip: A few tips on how to make good bug reports:

• Before you report a new bug, review the existing issues in the online issue tracker and the Debian BTS for
Monkeysign to make sure the bug has not already been reported elsewhere.

• The first aim of a bug report is to tell the developers exactly how to reproduce the failure, so try to reproduce
the issue yourself and describe how you did that.

2.3. Support 11

mailto:monkeysphere@lists.riseup.net
https://lists.riseup.net/www/arc/monkeysphere
https://riseup.net/
https://riseup.net/en/donate
http://web.monkeysphere.info/
https://www.oftc.net/
ircs://irc.oftc.net/monkeysphere
http://webchat.oftc.net/?nick=monkey.&channels=monkeysphere&prompt=1
https://0xacab.org/monkeysphere/monkeysign/issues
https://0xacab.org/monkeysphere/monkeysign/issues
http://bugs.debian.org/monkeysign
http://bugs.debian.org/monkeysign

Monkeysign Documentation, Release ???

• If that is not possible, just try to describe what went wrong in detail. Write down the error messages, especially
if they have numbers.

• Take the necessary time to write clearly and precisely. Say what you mean, and make sure it cannot be misin-
terpreted.

• Include the output of monkeysign --test, monkeysign --version and monkeysign --debug
in your bug reports. See the issue template for more details about what to include in bug reports.

If you wish to read more about issues regarding communication in bug reports, you can read How to Report Bugs
Effectively which takes about 30 minutes.

Warning: The output of the --debug shows public key material used by Monkeysign. Special efforts have been
made so that private key material is never displayed (or in fact accessed directly or copied) but you may want to
avoid publicly disclosing which keys you are signing because that can reveal your social graph. If you are confident
the signed user will publish the results on the public keyservers, this is not much of a concern. But otherwise, you
should leave that decision to that user. This is particularly relevant if you do not want to publicly certify this (e.g.
if you are using the --local flag). Do review the output before sending it in bug reports.

Debian BTS

You can also report bugs by email over the Debian BTS, even if you are not using Debian. Use the reportbug
package to report a bug if you run Debian (or Ubuntu), otherwise send an email to submit@bugs.debian.org,
with content like this:

To: submit@bugs.debian.org
From: you@example.com
Subject: fails to frobnicate

Package: monkeysign
Version: 1.0

Monkeysign fails to frobnicate.

I tried to do...

I was expecting...

And instead I had this backtrace...

I am running Arch Linux 2013.07.01, Python 2.7.5-1 under a amd64
architecture.

See also the complete instructions for more information on how to use the Debian bugtracker. You can also browse
the existing bug reports in the Debian BTS for Monkeysign there.

2.4 Contribute

This section explains the various ways users can participate in the development of Monkeysign, or get support when
they find problems.

12 Chapter 2. Similar projects

http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://bugs.debian.org/
http://www.debian.org/Bugs/Reporting
http://bugs.debian.org/monkeysign

Monkeysign Documentation, Release ???

2.4.1 Code of conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race,
religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment include:

• Using welcoming and inclusive language

• Being respectful of differing viewpoints and experiences

• Gracefully accepting constructive criticism

• Focusing on what is best for the community

• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

• The use of sexualized language or imagery and unwelcome sexual attention or advances

• Trolling, insulting/derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or electronic address, without explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appro-
priate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event. Representation of a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting one of the persons
listed below individually. All complaints will be reviewed and investigated and will result in a response that is deemed
necessary and appropriate to the circumstances. Project maintainers are obligated to maintain confidentiality with
regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

2.4. Contribute 13

Monkeysign Documentation, Release ???

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

Project maintainers are encouraged to follow the spirit of the Django Code of Conduct Enforcement Manual when
receiving reports.

Contacts

The following people have volunteered to be available to respond to Code of Conduct reports. They have reviewed
existing literature and agree to follow the aforementioned process in good faith. They also accept OpenPGP-encrypted
email:

• Antoine Beaupré <anarcat@debian.org>

• Daniel Kahn Gillmor <dkg@fifthhorseman.net>

Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at http://contributor-covenant.
org/version/1/4.

Changes

The Code of Conduct was modified to refer to project maintainers instead of project team and small paragraph was
added to refer to the Django enforcement manual.

Note: We have so far determined that writing an explicit enforcement policy is not necessary, considering the available
literature already available online and the relatively small size of the Monkeysign community. This may change in the
future if the community grows larger.

This code of conduct was adopted in 2016 by the Monkeysign maintainers, see 0xACAB issue #54 for more details
about the discussion.

2.4.2 Support schedule

First, to know a bit more about the version you are using, understand that we adhere to Semantic Versioning, which is:

Given a version number MAJOR.MINOR.PATCH, increment the:

• MAJOR version when you make incompatible API changes,

• MINOR version when you add functionality in a backwards-compatible manner, and

• PATCH version when you make backwards-compatible bug fixes.

Additional labels for pre-release and build metadata are available as extensions to the MA-
JOR.MINOR.PATCH format.

The 2.0.x branch is featured in Debian Jessie and Ubuntu Xenial and is therefore be maintained for security fixes for
the lifetime of those releases or of any other distribution that picks it up.

Most development and major bug fixes are done directly in the 2.x branch and published as part of minor releases,
which in turn become supported branches.

Major, API-changing development will happen on the 3.x branch.

14 Chapter 2. Similar projects

https://www.djangoproject.com/conduct/enforcement-manual/
mailto:anarcat@debian.org
mailto:dkg@fifthhorseman.net
http://contributor-covenant.org
http://contributor-covenant.org/version/1/4
http://contributor-covenant.org/version/1/4
https://0xacab.org/monkeysphere/monkeysign/issues/54
http://semver.org/

Monkeysign Documentation, Release ???

Those milestones are collaboratively tracked on 0xACAB.

Branches status

Each branch may be in one of those states:

• Development: the development branch is where most of the new features are implemented. Consequently, new
features and changes may inadvertently break things.

• Supported: The branch is supported, but no further development will be made on the branch. Only critical issues
and security fixes are performed.

• Deprecated: users are strongly encouraged to upgrade to later versions. No further updates perform except for
critical security issues.

• Abandoned: the branch is completely abandoned. No further updates will ever be performed on the branch,
security or otherwise.

Branch Status Notes
0.x Abandoned explicitly unsupported.
1.x Deprecated supported until the release of Debian jessie, now only in Debian LTS
2.0.x Supported supported until the end of Debian jessie
2.1.x Abandoned short lived support branch, superseded by 2.2.x
2.2.x Supported supported until the end of Debian stretch
2.x Development new releases performed here, schedule to be clarified

We try to keep the number of “supported” and “deprecated” branches to two each, which means it is likely a “depre-
cated” branch gets abandoned when a “supported” branch gets “deprecated”.

If you are interested in supporting one of those branches beyond the current state, we would be glad to welcome you
on the team. Contact us!

See also History for more information on past releases.

2.4.3 Documentation

We love documentation!

We maintain the documentation in the Git repository, in RST format. Documentation can be edited directly on the
website and built locally with Sphinx with:

cd doc ; make html

The Sphinx project has a good tutorial on RST online. Documentation is automatically generated on RTD.io.

2.4.4 Translation

Monkeysign is translated using the standard Gettext translation system. Translation files are located in the source
tree, in the po/ subdirectory and can be edited using standard translation tools or even a regular text editor. A new
translation for your locale can be created with the msginit command, see the gettext manual for more information
about how to use gettext directly.

You can also use the Weblate web interface to translate Monkeysign directly in your browser, without having to install
any special software. New translations from Weblate need to be updated in our source tree by hand, so do let us know
if you make a new translation, by filing an issue in our online issue tracker.

2.4. Contribute 15

https://0xacab.org/monkeysphere/monkeysign/milestones
https://0xacab.org/monkeysphere/monkeysign/
https://en.wikipedia.org/wiki/ReStructuredText
https://0xacab.org/monkeysphere/monkeysign/tree/HEAD
https://0xacab.org/monkeysphere/monkeysign/tree/HEAD
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/en/stable/rest.html
https://monkeysign.readthedocs.io/
https://en.wikipedia.org/wiki/Gettetx
https://www.gnu.org/software/gettext/manual/html_node/Editing.html#Editing
https://www.gnu.org/software/gettext/manual/
https://hosted.weblate.org/projects/monkeysphere/monkeysign/
https://0xacab.org/monkeysphere/monkeysign/issues

Monkeysign Documentation, Release ???

Note: We have chosen Weblate instead of other solutions because it integrates well with our git-based workflow:
translations on the site are stored as commits in the git repository, and the server is just another remote that we can
merge directly. It also merges our changes automatically and so requires minimal work on our part. We have also
considered tools like Transifex (proprietary) and Pootle (no public instance, requires us to run our own).

Tip: We encourage our users and developers to support Weblate’s development. Thank you to Weblate’s people for
hosting our project for free!.

2.4.5 Bug reports

We want you to report bugs you find in Monkeysign. It’s an important part of contributing to a project, and all bug
reports will be read and replied to politely and professionally. See the Support section for more information about
troubleshooting and bug reporting.

Bug triage

Bug triage is a very useful contribution as well. You can review the issues on 0xACAB or in the Debian BTS for
Monkeysign. What needs to be done is, for every issue:

• try to reproduce the bug, if it is not reproducible, tag it with unreproducible

• if information is missing, tag it with moreinfo

• if a patch is provided, tag it with patch and test it

• if the patch is incomplete, tag it with help (this is often the case when unit tests are missing)

• if the patch is not working, remove the patch tag

• if the patch gets merged into the git repository, tag it with pending

• if the feature request is not within the scope of the project or should be refused for other reasons, use the
wontfix tag and close the bug (with the close command or by CC’ing NNNN-done@bugs.debian.
org)

• feature requests should have a wishlist severity

Those directives apply mostly to the Debian BTS, but some tags are also useful in the 0xACAB site. See also the more
complete directives on how to use the Debian BTS.

2.4.6 Patches

Patches can be submitted through merge requests on the Gitlab site. You will need to contact the 0xACAB staff to
request access before you can create a fork and a merge request.

If you prefer old school, offline email systems, you can also use the Debian BTS, as described above, or send patches
to the mailing list for discussion.

Some guidelines for patches:

• A patch should be a minimal and accurate answer to exactly one identified and agreed problem.

• A patch must compile cleanly and pass project self-tests on at least the principle target platform.

16 Chapter 2. Similar projects

http://weblate.org/
https://en.wikipedia.org/wiki/Transifex
https://en.wikipedia.org/wiki/Pootle
https://weblate.org/en/donate/
https://0xacab.org/monkeysphere/monkeysign/issues
http://bugs.debian.org/monkeysign
http://bugs.debian.org/monkeysign
https://www.debian.org/Bugs/Developer
https://0xacab.org/monkeysphere/monkeysign/merge_requests
https://0xacab.org/monkeysphere/monkeysign/
https://0xacab.org/riseup/0xacab/issues/new?issue%5Bassignee_id%5D=&issue%5Btitle=fork%20permission%20request&issue%5Bdescription=I%20need%20permission%20to%20fork%20the%20Monkeysign%20repository%20to%20contribute%20to%20the%20project.%20Please%20grant%20me%20fork%20access.%20Thank%20you.

Monkeysign Documentation, Release ???

• A patch commit message must consist of a single short (less than 50 characters) line stating the a summary of
the change, followed by a blank line and then a description of the problem being solved and its solution, or a
reason for the change. Write more information, not less, in the commit log.

Maintainers should not merge their own patches unless there is no response from other maintainers within a reasonable
time frame (1-2 days).

Note: Those guidelines were inspired by the Collective Code Construct Contract. The document was found to be a
little too complex and hard to read and wasn’t adopted in its entirety. See those discussions for more information.

2.4.7 Unit tests

Unit tests should be ran before sending patches. They can be ran with monkeysign --test (starting from Mon-
keysign 2.1.4, previously it was ./test.py and only from the source tree).

The tests expect a unicode locale, so if you do not have that configured already, set one like this, otherwise a part of
the test suite will be skipped:

export LANG=C.UTF-8
monkeysign --test

It is possible that some keys used in the tests expire. The built-in keys do not have specific expiry dates, but some keys
are provided to test some corner cases and those keys may have new expiration dates. Those tests should be skipped
when the key expire, but the keys should eventually be renewed.

To renew the keys, try:

mkdir ~/.gpg-tmp
chmod 700 ~/.gpg-tmp
gpg --homedir ~/.gpg-tmp --import monkeysign/tests/files/7B75921E.asc
gpg --homedir ~/.gpg-tmp --refresh-keys 8DC901CE64146C048AD50FBB792152527B75921E
gpg --homedir ~/.gpg-tmp --export-options export-minimal --armor --export
→˓8DC901CE64146C048AD50FBB792152527B75921E > monkeysign/tests/files/7B75921E.asc

Once that is done, the @skipIfDatePassed tests need to be adjusted to not be skipped anymore.

It is also possible the key is just expired and there is no replacement. In this case the solution is to try and find a similar
test case and replace the key, or simply skip that test.

2.4.8 Debian packaging

The Debian package requires backports of dh-python to operate properly, otherwise you will get errors like Debian
BTS #839687:

LookupError: setuptools-scm was unable to detect version for '/tmp/buildd-...'.

A workaround is to hardcode the version with:

SETUPTOOLS_SCM_PRETEND_VERSION=x.y.z

2.4. Contribute 17

https://rfc.zeromq.org/spec:42/C4/
https://github.com/zeromq/rfc/issues?utf8=%E2%9C%93&q=author%3Aanarcat%20
https://bugs.debian.org/839687
https://bugs.debian.org/839687

Monkeysign Documentation, Release ???

2.4.9 Release process

To build a Monkeysign release, you will need to have a few tools already installed, namely the Python packages
wheel, setuptools and setuptools-scm. We also assume you use the following Debian packages, although
you may be able to work around those: devscripts, git, git-buildpackage, pip and twine. In Debian,
this should get you started:

sudo apt install python-wheel python-setuptools python-setuptools-scm devscripts git
→˓git-buildpackage python-pip twine

1. make sure tests pass:

./scripts/monkeysign --test

2. create release notes with:

git-dch
dch -D unstable

3. commit the results:

git commit -m"prepare new release" -a

4. create a signed and annotated tag:

git tag -s x.y.z

5. build and test Debian package:

git-buildpackage
dpkg -i ../monkeysign_*.deb
monkeysign --version
monkeysign --test
monkeyscan
dpkg --remove monkeysign

6. build and test Python “wheel”:

python setup.py bdist_wheel
pip install dist/*.whl
monkeysign --version
monkeysign --test
monkeyscan
pip uninstall monkeysign

7. push commits and tags to the git repository:

git push
git push --tags

8. publish Python “wheel” on PyPI:

twine upload dist/*

9. upload Debian package:

dput ../monkeysign*.changes

18 Chapter 2. Similar projects

Monkeysign Documentation, Release ???

10. add announcement on website, IRC channel and mailing list: monkeysphere@lists.riseup.net

11. on 0xACAB: close the current milestone, create the next one and edit the release notes on the tag

2.5 History

A first prototype of Monkeysign was created during the 2010 The Next HOPE in New York City by Jérôme Charaoui,
after a discussion with Daniel Kahn Gillmor and Antoine Beaupré.

During the following HOPE conference in 2012, the happy group met again and this time Antoine pushed the project
much further. On the train ride back home, he implementing a complete GnuPG compatibility layer that imported
keys, signed UIDs and so on, unaware of the existence of the python-gnupg project. This led to the publication of the
first 0.1 release, which was already a good caff replacement, with a GUI and qr-code support.

After one more year of development and testing, Antoine released the first stable 1.0 release in 2013 with SMTP
support, unitests and most features we now take for granted in Monkeysign. The 1.x branch was fairly short-lived,
a 2.0.0 release was published in 2014 with simplified interface, image files support and more improvements. This
release was the first long term support branch, issued to coincide with the Debian Jessie release.

Since then, a 2.1.x series was published to support GnuPG 2.1, and 2.2.x was released with support for Tor.

See Support schedule for more information about supported branches.

2.5.1 Detailed changelog

Here is the complete historical record of all known Monkeysign releases at the time of writing. More details about
changes is also available in the git repository.

monkeysign (2.2.3) unstable; urgency=medium

[Simon Fondrie-Teitler]

* Don't escape percent signs that are actually required in default mua command

[Antoine Beaupré]

* some small improvements to the bug issue template

* create 2.2.x branch officially

* silence errors in test suite with GnuPG 2

-- Antoine Beaupré <anarcat@debian.org> Tue, 24 Jan 2017 15:40:35 -0500

monkeysign (2.2.2) unstable; urgency=medium

[Antoine Beaupré]

* explicitly depend on socks, seems like pybuild doesn't puck up the
depends (Closes: #847716)

* forgot some future tests failures (Closes: #841115)

* properly redirect version information

* mention --test in bug report guidelines

* clarify support schedule, fix typos

* abandon 2.1.x, tell people how to support more

* indicate that you need to request access to create merge requests

* document the new test skipping features

* give proper credits to documenters

* add credits section

* fix trove classifier

* output the parsed qrcode data when verbose
(continues on next page)

2.5. History 19

mailto:monkeysphere@lists.riseup.net
https://0xacab.org/monkeysphere/monkeysign/milestones
https://0xacab.org/monkeysphere/monkeysign/tags
http://www.thenexthope.org/
http://hopenumbernine.net/

Monkeysign Documentation, Release ???

(continued from previous page)

* do not load default config files in tests

* adopt covenant code of conduct

* patches merging guidelines

* refer to modernPGP manuals

* move code of conducts contacts to a special section

[Simon Fondrie-Teitler]

* Add right click menu with print/save to qr code

* Don't attempt to sign a user's own key

* Make message more friendly

* add test for signing one's own key

* lowercase k in OpenPGPkey __repr__

* Add Simon to authors file

[Tobias Mueller]

* gpg: Use os.path.expanduser instead of the environment variable

-- Antoine Beaupré <anarcat@debian.org> Thu, 15 Dec 2016 11:04:13 -0500

monkeysign (2.2.1) unstable; urgency=medium

* fix socks dependency specification: it is a runtime, not just
build-time, dependency

* mark as production-ready in python classification

* skip another test that requires network during build

* run CI tests with --debug to ease future debugging

-- Antoine Beaupré <anarcat@debian.org> Sat, 15 Oct 2016 09:18:21 -0400

monkeysign (2.2.0) unstable; urgency=medium

* fix tests with Debian CI

* fix FTBS errors in reproducible builds due to test suite failing in
the future

* do not STARTTLS on already secure (TLS) connexions

* enable tor support with --tor flag

* handle SMTP conversations better

* add history section to documentation to publish this changelog more
widely

* document branches status and deprecate 2.1.x branch

* improve email usage documentation

-- Antoine Beaupré <anarcat@debian.org> Tue, 11 Oct 2016 11:29:10 -0400

monkeysign (2.1.4) unstable; urgency=medium

* --local now implies --no-mail (Closes: #719242)

* ship tests with program, accessible with --test parameter

* stop hardcoding version numbers in code, use setuptools-scm instead

* enable tests at build time and Debian CI (autopkgtest)

* complete GnuPG 2.1 support: test suite now passes!

-- Antoine Beaupré <anarcat@debian.org> Mon, 03 Oct 2016 16:18:07 -0400

monkeysign (2.1.3) unstable; urgency=medium

* add explicit build-dep on gnupg (Closes: #839355)
(continues on next page)

20 Chapter 2. Similar projects

Monkeysign Documentation, Release ???

(continued from previous page)

-- Antoine Beaupré <anarcat@debian.org> Sun, 02 Oct 2016 17:17:03 -0400

monkeysign (2.1.2) unstable; urgency=medium

* reroll release: forgot to bump version number in ode

* upload to pypi before debian, which will notice those errors in the future

-- Antoine Beaupré <anarcat@debian.org> Wed, 28 Sep 2016 09:17:20 -0400

monkeysign (2.1.1) unstable; urgency=medium

* properly transition monkeysign-doc packages to ensure upgrades work
(Closes: #839043)

* add monkeysign-doc to Suggests

* remove obsolete BUILD_TIMESTAMP, especially now that the manpage
generation was rewritten without timestamps

* improve release process and install documentation, remove presentation

* forgot to close a bunch of issues in 2.1.0 release:

* Monkeyscan fails at launch (Closes: #773970)

* expiry date in epoch time is not human readable (Closes: #760139)

* make builds reproducible (Closes: #784602)

-- Antoine Beaupré <anarcat@debian.org> Wed, 28 Sep 2016 08:18:24 -0400

monkeysign (2.1.0) unstable; urgency=medium

* new minor release for new features and lots of bugfixes, outline:

* GnuPG 2.1 support

* better handling of corner cases (revoked or expired key material,
large webcams) and better error messages)

* better SMTP support (no cleartext, SSMTP)

* move everything to 0xACAB.org to ease collaboration

* expand and convert documentation to reStructured Text and ship it in
a -doc package

* command to sendmail customizable through --mta (message piped
through stdin) or --mua (encrypted key attached on the commandline)

* space-separated fingerprints allowed for -u, which means -u needs to
be separated from the signed fingerprint with -- now

* configuration file support, which is written with --save

* crude preferences window in GUI

* detailed changelog below - this is the result of 2 years of work!

[Antoine Beaupré]

* import my personal key renewal to unbreak tests

* import zack's key renewal

* forbid sending passphrase in cleartext

* better explain that STARTTLS is used

* SSMTP support

* port to argparse, which somewhat broke the manpages

* allow space-separated fingerprints for -u (Closes: #720050)

* MUA support

* make sendmail command customizable through --mta

* make copy-paste message encrypted (Closes: #833605)

* handle improperly encoded UIDs (Closes: #736629)

* copy public keys for all secret keys found (Closes: #721599)

* skip keys without uids (Closes: #723152)
(continues on next page)

2.5. History 21

Monkeysign Documentation, Release ???

(continued from previous page)

* set a size for the webcam to avoid too large videos (Closes: #723154)

* add more tests for signing revoked uids

* add unit test for expired subkeys

* accommodate gitlab's naming conventions

* move to 0xacab.org for issues, removing bugs-everywhere

* convert markdown documents to RST

* merge the website in the main documentation

* expand documentation: support schedule, semantic versioning, PyPI, etc

* update urls for openkeychain, mark as compatible

* reshuffle test suite so we make sure it tests the local code

* style fixes

* fix a transient error in unit tests

* mention tests need a unicode locale

* fix monkeysign detection in source dir

* detect revoked keys and do not use them to sign keys
(Closes: #766129, #773896)

* fix lintian warning by specifying copyright version

* don't try to remove non-existent video device, and clarify error message

* output --version to stdout and don't make it an error

* properly raise exceptions when copying gpg.conf fails

* make sure ui calling sequence is correct in sign_key

* use ttyname instead of the tty command

* fix potential vulnerability in msgfmt parser

* review code for security issues with bandit

* handle missing MTA better, see 0xACAB #39

* use full path to sendmail, see 0xACAB #39

* clarify that without smtp, we use the default --mta

* fix whitespace issues in revoked patches

* add new trust state, `empty`

* properly fetch secret key material everywhere

* seek out secret keys first

* properly show output of runtime errors

* include standard debugging information on backtrace

* add hook to show detailed version information in reportbug (see 0xACAB #39)

* always enable --verbose when --debug is enabled

* configuration file support, which is written with --save

* crude preferences window in GUI

[Kristian Fiskerstrand]

* ui.py: Make sure to use smtplib namespace

[Tobias Mueller]

* Calculated whether a key has expired based on the parsed expiry

* gpg: Added a __repr__ for UIDs

* gpg: Added a __repr__ for OpenPGPKeys

* Added GnuPG 2.1 compatibility reg. its colon output

* gpg: Fixed up the key parsing for secret keys

* gpg: Make a full datetime, instead of epoch, for expiry

* msgfmt: Increase Python3 compatibility by removing "L" suffix

* translation: Use print() for increased python3 compatibility

* gpg: Implemented revoked for OpenPGP Keys

* gpg: Implemented revoked for OpenPGP UIDs

[Daniel Kahn Gillmor]

* use new-style gbp.conf

* make monkeysign build reproducibly

(continues on next page)

22 Chapter 2. Similar projects

Monkeysign Documentation, Release ???

(continued from previous page)

[Michael R. Lawrence]

* Translated using Weblate (Italian)

* Translated using Weblate (French)

[Michal Čihař]

* Translated using Weblate (Czech)

[Ahmed El Azzabi]

* Translated using Weblate (French)

[Gonzalo Exequiel Pedone]

* Translated using Weblate (Spanish)

[Jerome Charaoui]

* Remove bugseverwhere data and migrate issues to 0xacab.org

* Ignore irrelevant gpg errors (Closes: #736548)

[Ramakrishnan Muthukrishnan]

* Improve the error message when signing an already signed key.

* improve unit tests for already signed keys and keep previous check

[emma peel]

* various improvements to the documentation

-- Antoine Beaupré <anarcat@debian.org> Tue, 13 Sep 2016 13:37:50 -0400

monkeysign (2.0.2) unstable; urgency=medium

* this patch releases fixes critical issues...

* reported in the Debian BTS:

* encode prompt properly before prompting (closes: #771032)

* try to handle error when import actually works in GTK UI
(closes: #770900)

* improve debugging by wrapping all writes to gnupg in debug

* use the proper index when selecting key to sign
(closes: #771034)

* reported on the Monkeysphere mailing list:

* hotfix: properly verify the image signature file

* hotfix: disable scrolling in qrcode window

* don't try to remove non-existent video device, and clarify error
message

* output --version to stdout and don't make it an error

* those fix FTBS issues:

* fix tests after cd4e18c: guess encoding properly

* update zack's key so tests succeed again

* and this makes sure this package will be easier to support for the
lifetime of jessie

* improve error handling again: distinguish different failure cases
and clearly transmit GPG errors

-- Antoine Beaupré <anarcat@debian.org> Mon, 01 Dec 2014 21:03:56 -0500

monkeysign (2.0.1) unstable; urgency=medium

* hot patch release while we still can before jessie:

* fix tests under GnuPG 2.x
(continues on next page)

2.5. History 23

Monkeysign Documentation, Release ???

(continued from previous page)

* improve usage to clarify -u, --cert-level and --to

* fix version number to include patch release

-- Antoine Beaupré <anarcat@debian.org> Mon, 20 Oct 2014 22:24:37 -0400

monkeysign (2.0.0) unstable; urgency=medium

* new features:

* implement qrcode image import, to allow people without webcams to
import pictures from a trusted camera - the images must be signed with
a detached signature on pain of a ugly warning with instructions.

* move to bugs-everywhere instead of that crazy TODO file

* udate french translation

* usability improvements:

* interface simplified: only the qrcode and webcam with instructions

* all options moved to menus, including the print/save buttons, the
video and identity dropdowns

* properly handle exceptions in gtk UI

* avoid duplicate camera listing and display nicer name (Closes: #718796)

* create a set of mockups for a UI redesign and API documentation
rendered at http://monkeysign.readthedocs.org/

* bug fixes:

* fix "Content-description" to be more useful (Closes: #723677)

* support monkeysign --version", thanks to Gabriel Fillion (Closes: #725113)

* add debugging info from smtp connection, thanks to Gabriel Filion
(Closes: #756540)

* some improvements were done in the GnuPG library to work around
certain GnuPG corner cases and describe problems better

* install monkeyscan command as a symlink properly (Closes: #743150)

* switch to long term support strategy for the 2.0.x release in
preparation for Debian Jessie

-- Antoine Beaupré <anarcat@debian.org> Sat, 18 Oct 2014 13:25:54 -0400

monkeysign (1.2) unstable; urgency=medium

* improve python 3 compatibility, partially (Closes: #725059)

* update translation strings

* spanish translation, thanks to lilbit

* partial french translation

* Czech translation, thanks to Michal Čihař

* Bug fix: "build_slides fails of two reasons", thanks to Felix Dreissig
(Closes: #738731).

* Bug fix: "build_manpage only works because of PyGTK encoding changes",
thanks to Felix Dreissig (Closes: #738730).

* Bug fix: "build_trans fails if called seperately", thanks to Felix
Dreissig (Closes: #738732).

-- Antoine Beaupré <anarcat@debian.org> Thu, 28 Aug 2014 20:23:57 -0700

monkeysign (1.1) unstable; urgency=low

[Antoine Beaupré]

* improved SMTP support:

* SMTP username and passwords can be passed as commandline arguments

* SMTP password is prompted if not specified

* use STARTTLS if available
(continues on next page)

24 Chapter 2. Similar projects

Monkeysign Documentation, Release ???

(continued from previous page)

* enable SMTP debugging only debugging is enabled

* show the unencrypted email with --no-mail (Closes: #720049)

* warn when gpg-agent is not running or failing (Closes: #723052)

* set GPG_TTY if it is missing (Closes: #719908)

* bail out on already signed keys (Closes: #720055)

* mention monkeyscan in the package description so it can be found more
easily

* fix python-pkg-resources dependency

* don't show backtrace on control-c

* add missing files to .gitignore (Closes: #724007)

* ship with a neat little slideshow to make presentations

[Philip Jägenstedt]

* fix some typos (Closes: #722964)

* add --cert-level option (Closes: #722740)

-- Antoine Beaupré <anarcat@debian.org> Tue, 01 Oct 2013 00:22:30 +0200

monkeysign (1.0) unstable; urgency=low

* stop copying secrets to the temporary keyring

* make sure we use the right signing key when specified

* signatures on multiple UIDs now get properly sent separately
(Closes: #719241)

* this includes "deluid" support on the gpg library

* significantly refactor email creation

* improve unit tests on commandline scripts, invalid (revoked) keys and
timeout handling

* provide manpages (Closes: #716674)

* avoid showing binary garbage on export when debugging

* properly fail if password confirmation fails

* user interfaces now translatable

* accept space-separated key fingerprints

* fix single UID key signing

* proper formatting of UIDs with comments (removed) and spaces (wrapped)
for emails

-- Antoine Beaupré <anarcat@debian.org> Wed, 14 Aug 2013 20:51:44 -0400

monkeysign (0.9) unstable; urgency=low

* refactor unit tests again to optimise UI tests and test mail generation

* fix error handling in encryption/decryption (Closes: #717622)

* rename msign-cli to monkeysign and msign to monkeyscan (Closes: #717623)

* handle interruptions cleanly when choosing user IDs (see: #716675)

-- Antoine Beaupré <anarcat@debian.org> Tue, 23 Jul 2013 10:56:50 -0400

monkeysign (0.8) unstable; urgency=low

* refactor unit test suite to allow testing the commandline tool
interactively

* don't fail on empty input when choosing uid (Closes: #716675)

* we also explain how to refuse signing a key better

* optimise network tests so they timeout (so fail) faster

-- Antoine Beaupré <anarcat@debian.org> Wed, 17 Jul 2013 22:52:02 -0400
(continues on next page)

2.5. History 25

Monkeysign Documentation, Release ???

(continued from previous page)

monkeysign (0.7.1) unstable; urgency=low

* fix binary package dependency on python

* update to debhelper 9

* update to standards 3.9.4, no change

-- Antoine Beaupré <anarcat@debian.org> Sun, 07 Jul 2013 09:58:56 -0400

monkeysign (0.7) unstable; urgency=low

* fix crash when key not found on keyservers

* use a proper message in outgoing emails

* unit tests extended to cover user interface

* import keys from the local keyring before looking at the keyserver

* fix print/save exports (thanks Simon!)

* don't depend on a graphical interface

* update copyright dates and notices

* mark as priority: optional instead of extra

-- Antoine Beaupré <anarcat@debian.org> Sat, 06 Jul 2013 01:07:28 -0400

monkeysign (0.6) unstable; urgency=low

* fix warnings in the graphical interface

* make qr-code detection be case-insensitive

* fix syntax error

* follow executable renames properly

-- Antoine Beaupré <anarcat@debian.org> Sat, 06 Oct 2012 16:08:48 +0200

monkeysign (0.5) unstable; urgency=low

* non-exportable signatures (--local) support

* simplify the monkeysign-scan UI

* rename monkeysign-scan to msign and monkeysign-cli to msign-cli to
avoid tab-completion conflict with monkeysphere executables, at the
request of Monkeysphere developers

* usability: make sure arguments are case-insensitive

* fix email format so it's actually readable

-- Antoine Beaupré <anarcat@debian.org> Fri, 05 Oct 2012 11:14:37 +0200

monkeysign (0.4) unstable; urgency=low

* merge display and scanning of qrcodes

* really remove remaining pyme dependency

* list key indexes to allow choosing more clearly

* copy the gpg.conf in temporary keyring

* fix keyserver operation in GUI

* implement UID choosing in GUI

-- Antoine Beaupré <anarcat@debian.org> Wed, 01 Aug 2012 02:33:29 -0400

monkeysign (0.3) unstable; urgency=low

* allow keyserver to be enabled while not specified
(continues on next page)

26 Chapter 2. Similar projects

Monkeysign Documentation, Release ???

(continued from previous page)

* do not set an empty keyserver, fixing weird keyserver errors on -scan

* fix window reference in UI, spotted by dkg

* mark this as architecture-independent, spotted by dkg

* make setup executable

* reference new homepage

* API change: functions return false instead of raising exceptions

* fix multiple keys listing support

-- Antoine Beaupré <anarcat@debian.org> Thu, 26 Jul 2012 12:41:54 -0400

monkeysign (0.2) unstable; urgency=low

* only load information from private keys when doing key detection

* add debugging in key choosing algorithm

* import private keyring even in dry-run

* properly import re, fixing a crash

* add usage for monkeysign-scan

* fixup modules list so that the package actually works

* make this not crash completely if there's no video

* improve short description so that it matches 'key signing'

* fix dependencies

* fix typo, noticed by micah

-- Antoine Beaupré <anarcat@debian.org> Sun, 22 Jul 2012 13:38:00 -0400

monkeysign (0.1) unstable; urgency=low

* Initial Release.

-- Antoine Beaupré <anarcat@debian.org> Sat, 21 Jul 2012 12:05:59 -0400

2.6 API documentation

2.6.1 GnuPG API

Native Python / GPG API

This API was written to replace the GPGME bindings because the GPGME API has a few problems:

1. it is arcane and difficult to grasp

2. it is very closely bound to the internal GPG data and commandline structures, which are quite confusing

3. GPGME doesn’t actually talk to a GPG library, but interacts with GPG through the commandline

4. GPGME developers are not willing to extend GPGME to cover private key material management and consider
this is outside the scope of the project.

The latter two points are especially problematic for this project, and I have therefore started working on a replacement.

Operations are performed mostly through the Keyring or KeyringTmp class (if you do not want to access your regular
keyring but an empty temporary one).

This is how you can access keys, which are represented by the OpenPGPkey datastructure, but which will not look in
your keyring or on the keyservers itself without the Keyring class.

It seems that I have missed a similar project that’s been around for quite a while (2008-2012):

2.6. API documentation 27

Monkeysign Documentation, Release ???

https://code.google.com/p/python-gnupg/

The above project has a lot of similarities with this implementation, but is better because:

1. it actually parses most status outputs from GPG, in a clean way

2. uses threads so it doesn’t block

3. supports streams

4. supports verification, key generation and deletion

5. has a cleaner and more complete test suite

However, the implementation here has:

1. key signing support

2. a cleaner API

Error handling is somewhat inconsistent here. Some functions rely on exceptions, other on boolean return values. We
prefer exceptions as it allows us to propagate error messages to the UI, but make sure to generate a RuntimeError, and
not a ProtocolError, which are unreadable to the user.

class monkeysign.gpg.Context
Python wrapper for GnuPG

This wrapper allows for a simpler interface than GPGME or PyME to GPG, and bypasses completely GPGME
to interoperate directly with GPG as a process.

It uses the gpg-agent to prompt for passphrases and communicates with GPG over the stdin for commnads
(–command-fd) and stdout for status (–status-fd).

build_command(command)
internal helper to build a proper gpg commandline

this will add relevant arguments around the gpg binary.

like the options arguments, the command is expected to be a regular gpg command with the – stripped.
the – are added before being called. this is to make the code more readable, and eventually support other
backends that actually make more sense.

this uses build_command to create a commandline out of the ‘options’ dictionary, and appends the provided
command at the end. this is because order of certain options matter in gpg, where some options (like –recv-
keys) are expected to be at the end.

it is here that the options dictionary is converted into a list. the command argument is expected to be a list
of arguments that can be converted to strings. if it is not a list, it is cast into a list.

call_command(command, stdin=None)
internal wrapper to call a GPG commandline

this will call the command generated by build_command() and setup a regular pipe to the subcommand.

this assumes that we have the status-fd on stdout and command-fd on stdin, but could really be used in any
other way.

we pass the stdin argument in the standard input of gpg and we keep the output in the stdout and stderr
array. the exit code is in the returncode variable.

we can optionnally watch for a confirmation pattern on the statusfd.

expect(fd, pattern)
look for a specific GNUPG status on the next line of output

this is a stub for expect()

28 Chapter 2. Similar projects

https://code.google.com/p/python-gnupg/

Monkeysign Documentation, Release ???

expect_pattern(fd, pattern)
make sure the next line matches the provided pattern

in contrast with seek_pattern(), this will not skip non-matching lines and instead raise an exception if such
a line is found.

this therefore looks only at the next line, but may also hang like seek_pattern()

if the beginning of the line matches a pattern which is being ignored, it will skip it and look at the next line

gpg_binary = 'gpg'

options = {'batch': None, 'command-fd': 0, 'fixed-list-mode': None, 'list-options': 'show-sig-subpackets,show-uid-validity,show-unusable-uids,show-unusable-subkeys,show-keyring,show-sig-expire', 'no-tty': None, 'no-verbose': None, 'quiet': None, 'status-fd': 2, 'use-agent': None, 'with-colons': None, 'with-fingerprint': None}

seek(fd, pattern)
look for a specific GNUPG status line in the output

this is a stub for seek_pattern()

seek_pattern(fd, pattern)
iterate over file descriptor until certain pattern is found

fd is a file descriptor pattern a string describing a regular expression to match

this will skip lines not matching pattern until the pattern is found. it will raise an IOError if the pattern is
not found and EOF is reached.

this may hang for streams that do not send EOF or are waiting for input.

set_option(option, value=None)
set an option to pass to gpg

this adds the given ‘option’ commandline argument with the value ‘value’. to pass a flag without an
argument, use ‘None’ for value

unset_option(option)
remove an option from the gpg commandline

version()
return the version of the GPG binary

write(fd, message)
write the specified message to gnupg, usually on stdout

but really, the pipes are often setup outside of here so the fd is hardcoded here

exception monkeysign.gpg.GpgProtocolError
simple exception raised when we have trouble talking with GPG

we try to pass the subprocess.popen.returncode as an errorno and a significant description string

this error shouldn’t be propagated to the user, because it will contain mostly “expect” jargon from the DE-
TAILS.txt file. the gpg module should instead raise a GpgRutimeError with a user-readable error message (e.g.
“key not found”).

expected()

found()

match()

exception monkeysign.gpg.GpgRuntimeError

class monkeysign.gpg.Keyring(homedir=None)
Keyring functionalities.

This allows various operations (e.g. listing, signing, exporting data) on a keyring.

2.6. API documentation 29

Monkeysign Documentation, Release ???

Concretely, we talk about a “keyring”, but we really mean a set of public and private keyrings and their trust
databases. In practice, this is the equivalent of the GNUPGHOME or –homedir in GPG, and in fact this is
implemented by setting a specific homedir to tell GPG to operate on a specific keyring.

We actually use the –homedir parameter to gpg to set the keyring we operate upon.

context = None

decrypt_data(data)
decrypt data using asymetric encryption

returns the plaintext data or raise a GpgRuntimeError if it failed.

del_uid(fingerprint, pattern)

encrypt_data(data, recipient)
encrypt data using asymetric encryption

returns the encrypted data or raise a GpgRuntimeError if it fails

export_data(fpr=None, secret=False)
Export OpenPGP data blocks from the keyring.

This exports actual OpenPGP data, by default in binary format, but can also be exported asci-armored by
setting the ‘armor’ option.

fetch_keys(fpr, keyserver=None)
Download keys from a keyserver into the local keyring

This expects a fingerprint (or a at least a key id).

Returns true if the command succeeded.

get_agent_socket()
get the location of the gpg-agent socket for this keyring

get_keys(pattern=None, secret=False, public=True, keys=None)
load keys matching a specific patterns

this uses the (rather poor) list-keys API to load keys information

import_data(data)
Import OpenPGP data blocks into the keyring.

This takes actual OpenPGP data, ascii-armored or not, gpg will gladly take it. This can be signatures,
public, private keys, etc.

You may need to set import-flags to import non-exportable signatures, however.

sign_key(pattern, signall=False, local=False)
sign a OpenPGP public key

By default it looks up and signs a specific uid, but it can also sign all uids in one shot thanks to GPG’s
optimization on that.

The pattern here should be a full user id if we sign a specific key (default) or any pattern (fingerprint, keyid,
partial user id) that GPG will accept if we sign all uids.

@todo that this currently block if the pattern specifies an incomplete UID and we do not sign all keys.

verify_file(sigfile, filename)

class monkeysign.gpg.OpenPGPkey(data=None)
An OpenPGP key.

Some of this datastructure is taken verbatim from GPGME.

30 Chapter 2. Similar projects

Monkeysign Documentation, Release ???

algo = -1

creation = 0

disabled = False

expired

expiry
Returns a datetime from the _expiry field or None if the key does not expire

format_fpr()
display a clean version of the fingerprint

this is the display we usually see

fpr = None

get_trust()

invalid = False

keyid(l=8)

length = None

parse_gpg_list(text)

purpose = {}

qualified = False

revoked
Returns whether GnuPG thinks the key has been revoked

This is the second field of the result of the –list-key –with-colons call. Note that this information is only
present on public keys, i.e. not on secret keys.

Returns None if it cannot be determined whether this key has been revoked.

secret = False

subkeys = {}

trust = None

trust_map = {'': 'empty', '-': 'unknown', 'd': 'disabled', 'e': 'expired', 'f': 'full', 'i': 'invalid', 'm': 'marginal', 'n': 'none', 'o': 'new', 'q': 'undefined', 'r': 'revoked', 'u': 'ultimate'}

uids = {}

class monkeysign.gpg.OpenPGPuid(uid, trust, creation=0, expire=None, uidhash=”)

get_trust()

revoked
Whether this UID has been revoked

Note that, due to GnuPG not exporting that information for secret keys, UIDs of secret keys do not carry
that information.

Return None if it cannot be determined whether this UID has been revoked. Try again with the public key.

class monkeysign.gpg.TempKeyring

2.6. API documentation 31

Monkeysign Documentation, Release ???

2.6.2 CLI Interface

2.6.3 GTK Interface

2.7 UI mockups and design

We are planning significant changes to the graphical user interface of Monkeysign in the 3.x branch.

2.7.1 Signing interface

2.7.2 Key sharing interface

32 Chapter 2. Similar projects

Monkeysign Documentation, Release ???

2.8 Terminology

In this documentation, the following definitions are used:

QR-code

QRcode

QR code

Bar code

Barcode A “QR code” (abbreviation of Quick Response Code) is sort of bar code, an optical label that is designed to
be machine-readable. A QR code is faster to read by computers and contains more information than than regular
bar codes, which is why it is used in Monkeysign to communicate fingerprints. See Wikipedia article QR code
for more information.

MTA

Message Transfer Agent A computer program designed to transfer emails between different machines, usually run-
ning on servers. See Wikipedia article Message Transfer Agent for more information.

MUA

Mail User Agent A computer program used to read, compose and send email, normally ran on user computers. See
Wikipedia article Mail User Agent for more information.

We also try to adhere to the Modern PGP terminology when possible.

2.9 Credits

Those people are the ones who made Monkeysign possible.

__authors__ = ['In alphabetical order:',
'',
'Antoine Beaupré',
'Daniel Kahn Gillmor',
'Gabriel Fillion',
'Jérôme Charaoui',
'Kristian Fiskerstrand',
'Philip Jägenstedt',
'Ramakrishnan Muthukrishnan',
'Simon Fondrie-Teitler',
'Tobias Mueller',
]

__documenters__ = ['In alphabetical order:',
'',
'Antoine Beaupré',
'Emma Peel',
]

__translators__ = ['In alphabetical order:',
'',
'Antoine Beaupré',
'Ahmed El Azzabi',
'Gonzalo Exequiel Pedone',
'Michael R. Lawrence',
'Michal Čihař',
]

2.8. Terminology 33

https://en.wikipedia.org/wiki/QR code
https://en.wikipedia.org/wiki/Message Transfer Agent
https://en.wikipedia.org/wiki/Mail User Agent
http://modernpgp.org/
https://github.com/ModernPGP/terminology

Monkeysign Documentation, Release ???

• genindex

• modindex

• search

34 Chapter 2. Similar projects

Python Module Index

m
monkeysign.gpg, 27

35

Monkeysign Documentation, Release ???

36 Python Module Index

Index

A
algo (monkeysign.gpg.OpenPGPkey attribute), 30

B
Bar code, 33
Barcode, 33
build_command() (monkeysign.gpg.Context

method), 28

C
call_command() (monkeysign.gpg.Context method),

28
Context (class in monkeysign.gpg), 28
context (monkeysign.gpg.Keyring attribute), 30
creation (monkeysign.gpg.OpenPGPkey attribute), 31

D
decrypt_data() (monkeysign.gpg.Keyring method),

30
del_uid() (monkeysign.gpg.Keyring method), 30
disabled (monkeysign.gpg.OpenPGPkey attribute), 31

E
encrypt_data() (monkeysign.gpg.Keyring method),

30
expect() (monkeysign.gpg.Context method), 28
expect_pattern() (monkeysign.gpg.Context

method), 28
expected() (monkeysign.gpg.GpgProtocolError

method), 29
expired (monkeysign.gpg.OpenPGPkey attribute), 31
expiry (monkeysign.gpg.OpenPGPkey attribute), 31
export_data() (monkeysign.gpg.Keyring method),

30

F
fetch_keys() (monkeysign.gpg.Keyring method), 30
format_fpr() (monkeysign.gpg.OpenPGPkey

method), 31

found() (monkeysign.gpg.GpgProtocolError method),
29

fpr (monkeysign.gpg.OpenPGPkey attribute), 31

G
get_agent_socket() (monkeysign.gpg.Keyring

method), 30
get_keys() (monkeysign.gpg.Keyring method), 30
get_trust() (monkeysign.gpg.OpenPGPkey method),

31
get_trust() (monkeysign.gpg.OpenPGPuid method),

31
gpg_binary (monkeysign.gpg.Context attribute), 29
GpgProtocolError, 29
GpgRuntimeError, 29

I
import_data() (monkeysign.gpg.Keyring method),

30
invalid (monkeysign.gpg.OpenPGPkey attribute), 31

K
keyid() (monkeysign.gpg.OpenPGPkey method), 31
Keyring (class in monkeysign.gpg), 29

L
length (monkeysign.gpg.OpenPGPkey attribute), 31

M
Mail User Agent, 33
match() (monkeysign.gpg.GpgProtocolError method),

29
Message Transfer Agent, 33
monkeysign.gpg (module), 27
MTA, 33
MUA, 33

O
OpenPGPkey (class in monkeysign.gpg), 30

37

Monkeysign Documentation, Release ???

OpenPGPuid (class in monkeysign.gpg), 31
options (monkeysign.gpg.Context attribute), 29

P
parse_gpg_list() (monkeysign.gpg.OpenPGPkey

method), 31
purpose (monkeysign.gpg.OpenPGPkey attribute), 31

Q
QR code, 33
QR-code, 33
QRcode, 33
qualified (monkeysign.gpg.OpenPGPkey attribute),

31

R
revoked (monkeysign.gpg.OpenPGPkey attribute), 31
revoked (monkeysign.gpg.OpenPGPuid attribute), 31

S
secret (monkeysign.gpg.OpenPGPkey attribute), 31
seek() (monkeysign.gpg.Context method), 29
seek_pattern() (monkeysign.gpg.Context method),

29
set_option() (monkeysign.gpg.Context method), 29
sign_key() (monkeysign.gpg.Keyring method), 30
subkeys (monkeysign.gpg.OpenPGPkey attribute), 31

T
TempKeyring (class in monkeysign.gpg), 31
trust (monkeysign.gpg.OpenPGPkey attribute), 31
trust_map (monkeysign.gpg.OpenPGPkey attribute),

31

U
uids (monkeysign.gpg.OpenPGPkey attribute), 31
unset_option() (monkeysign.gpg.Context method),

29

V
verify_file() (monkeysign.gpg.Keyring method),

30
version() (monkeysign.gpg.Context method), 29

W
write() (monkeysign.gpg.Context method), 29

38 Index

	Features
	Similar projects
	Install
	Usage
	Support
	Contribute
	History
	API documentation
	UI mockups and design
	Terminology
	Credits

	Python Module Index
	Index

